Library Coquelicot.AutoDerive
This file is part of the Coquelicot formalization of real
analysis in Coq: http://coquelicot.saclay.inria.fr/
Copyright (C) 2011-2015 Sylvie Boldo
Copyright (C) 2011-2015 Catherine Lelay
Copyright (C) 2011-2017 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
Copyright (C) 2011-2015 Catherine Lelay
Copyright (C) 2011-2017 Guillaume Melquiond
From Coq Require Import Reals Datatypes ssreflect ssrbool.
From mathcomp Require Import seq.
Require Import Rcomplements Hierarchy Derive RInt RInt_analysis Derive_2d Continuity ElemFct.
Reflective tactic for solving goals of the form derivable_pt_lim
Fixpoint Rn n T :=
match n with
| O ⇒ T
| S n ⇒ R → Rn n T
end.
Inductive bop :=
| Eplus
| Emult.
Inductive uop :=
| Eopp
| Einv
| Efct : ∀ (f f' : R → R), (∀ x, is_derive f x (f' x)) → uop
| Efct' : ∀ (f f' : R → R) (df : R → Prop), (∀ x, df x → is_derive f x (f' x)) → uop.
Inductive expr :=
| Var : nat → expr
| AppExt : ∀ k, Rn k R → seq expr → expr
| AppExtD : ∀ k, Rn k R → nat → seq expr → expr
| App : expr → expr → expr
| Subst : expr → expr → expr
| Cst : R → expr
| Binary : bop → expr → expr → expr
| Unary : uop → expr → expr
| Int : expr → expr → expr → expr.
Section ExprInduction.
Hypothesis P : expr → Prop.
Hypothesis P_Var : ∀ n, P (Var n).
Hypothesis P_AppExt : ∀ k f le, foldr (fun e acc ⇒ P e ∧ acc) True le → P (AppExt k f le).
Hypothesis P_AppExtD : ∀ k f n le, foldr (fun e acc ⇒ P e ∧ acc) True le → P (AppExtD k f n le).
Hypothesis P_App : ∀ e1 e2, P e1 → P e2 → P (App e1 e2).
Hypothesis P_Subst : ∀ e1 e2, P e1 → P e2 → P (Subst e1 e2).
Hypothesis P_Cst : ∀ r, P (Cst r).
Hypothesis P_Binary : ∀ o e1 e2, P e1 → P e2 → P (Binary o e1 e2).
Hypothesis P_Unary : ∀ o e, P e → P (Unary o e).
Hypothesis P_Int : ∀ f e1 e2, P f → P e1 → P e2 → P (Int f e1 e2).
Fixpoint expr_ind' (e : expr) : P e :=
match e return P e with
| Var n ⇒ P_Var n
| AppExt k f le ⇒ P_AppExt k f le
((fix expr_ind'' (le : seq expr) : foldr (fun e acc ⇒ P e ∧ acc) True le :=
match le return foldr (fun e acc ⇒ P e ∧ acc) True le with
| nil ⇒ I
| cons h q ⇒ conj (expr_ind' h) (expr_ind'' q)
end) le)
| AppExtD k f n le ⇒ P_AppExtD k f n le
((fix expr_ind'' (le : seq expr) : foldr (fun e acc ⇒ P e ∧ acc) True le :=
match le return foldr (fun e acc ⇒ P e ∧ acc) True le with
| nil ⇒ I
| cons h q ⇒ conj (expr_ind' h) (expr_ind'' q)
end) le)
| App e1 e2 ⇒ P_App e1 e2 (expr_ind' e1) (expr_ind' e2)
| Subst e1 e2 ⇒ P_Subst e1 e2 (expr_ind' e1) (expr_ind' e2)
| Cst r ⇒ P_Cst r
| Binary o e1 e2 ⇒ P_Binary o e1 e2 (expr_ind' e1) (expr_ind' e2)
| Unary o e ⇒ P_Unary o e (expr_ind' e)
| Int f e1 e2 ⇒ P_Int f e1 e2 (expr_ind' f) (expr_ind' e1) (expr_ind' e2)
end.
End ExprInduction.
Fixpoint apply {T} p : Rn p T → (nat → R) → T :=
match p return Rn p T → _ → T with
| O ⇒ fun (x : T) _ ⇒ x
| S p ⇒ fun (f : Rn (S p) T) g ⇒ apply p (f (g p)) g
end.
Lemma apply_ext :
∀ T k (f : Rn k T) g1 g2,
(∀ n, (n < k)%nat → g1 n = g2 n) →
apply k f g1 = apply k f g2.
Definition Derive_Rn n (f : Rn n R) p g :=
Derive (fun x ⇒ apply n f (fun i ⇒ if ssrnat.eqn i p then x else g i)) (g p).
Definition ex_derive_Rn n (f : Rn n R) p g :=
ex_derive (fun x ⇒ apply n f (fun i ⇒ if ssrnat.eqn i p then x else g i)) (g p).
Fixpoint interp (l : seq R) (e : expr) : R :=
match e with
| Var n ⇒ nth R0 l n
| AppExt k f le ⇒ apply k f (nth 0 (map (interp l) le))
| AppExtD k f n le ⇒ Derive_Rn k f n (nth 0 (map (interp l) le))
| App e1 e2 ⇒ interp ((interp l e2) :: l) e1
| Subst e1 e2 ⇒ interp (set_nth R0 l 0 (interp l e2)) e1
| Cst c ⇒ c
| Binary o e1 e2 ⇒ match o with Eplus ⇒ Rplus | Emult ⇒ Rmult end (interp l e1) (interp l e2)
| Unary o e ⇒ match o with Eopp ⇒ Ropp | Einv ⇒ Rinv | Efct f f' H ⇒ f | Efct' f f' df H ⇒ f end (interp l e)
| Int e1 e2 e3 ⇒ RInt (fun x ⇒ interp (x :: l) e1) (interp l e2) (interp l e3)
end.
Inductive domain :=
| Never : domain
| Always : domain
| Partial : (R → Prop) → expr → domain
| Derivable : nat → ∀ k, Rn k R → seq expr → domain
| Derivable2 : nat → nat → ∀ k, Rn k R → seq expr → domain
| Continuous : nat → expr → domain
| Continuous2 : nat → nat → expr → domain
| Integrable : expr → expr → expr → domain
| ParamIntegrable : nat → expr → expr → expr → domain
| LocallyParamIntegrable : nat → expr → expr → domain
| And : seq domain → domain
| Forall : expr → expr → domain → domain
| Forone : expr → domain → domain
| Locally : nat → domain → domain
| Locally2 : nat → nat → domain → domain
| ForallWide : nat → expr → expr → domain → domain.
Section DomainInduction.
Hypothesis P : domain → Prop.
Hypothesis P_Never : P Never.
Hypothesis P_Always : P Always.
Hypothesis P_Partial : ∀ p e, P (Partial p e).
Hypothesis P_Derivable : ∀ n k f le, P (Derivable n k f le).
Hypothesis P_Derivable2 : ∀ m n k f le, P (Derivable2 m n k f le).
Hypothesis P_Continuous : ∀ n e, P (Continuous n e).
Hypothesis P_Continuous2 : ∀ m n e, P (Continuous2 m n e).
Hypothesis P_Integrable : ∀ f e1 e2, P (Integrable f e1 e2).
Hypothesis P_ParamIntegrable : ∀ n f e1 e2, P (ParamIntegrable n f e1 e2).
Hypothesis P_LocallyParamIntegrable : ∀ n f e, P (LocallyParamIntegrable n f e).
Hypothesis P_And : ∀ ld, foldr (fun d acc ⇒ P d ∧ acc) True ld → P (And ld).
Hypothesis P_Forall : ∀ e1 e2 d, P d → P (Forall e1 e2 d).
Hypothesis P_Forone : ∀ e d, P d → P (Forone e d).
Hypothesis P_Locally : ∀ n d, P d → P (Locally n d).
Hypothesis P_Locally2 : ∀ m n d, P d → P (Locally2 m n d).
Hypothesis P_ForallWide : ∀ n e1 e2 d, P d → P (ForallWide n e1 e2 d).
Fixpoint domain_ind' (d : domain) : P d :=
match d return P d with
| Never ⇒ P_Never
| Always ⇒ P_Always
| Partial d e ⇒ P_Partial d e
| Derivable n k f le ⇒ P_Derivable n k f le
| Derivable2 m n k f le ⇒ P_Derivable2 m n k f le
| Continuous n e ⇒ P_Continuous n e
| Continuous2 m n e ⇒ P_Continuous2 m n e
| Integrable f e1 e2 ⇒ P_Integrable f e1 e2
| ParamIntegrable n f e1 e2 ⇒ P_ParamIntegrable n f e1 e2
| LocallyParamIntegrable n f e ⇒ P_LocallyParamIntegrable n f e
| And ld ⇒ P_And ld
((fix domain_ind'' (ld : seq domain) : foldr (fun d acc ⇒ P d ∧ acc) True ld :=
match ld return foldr (fun d acc ⇒ P d ∧ acc) True ld with
| nil ⇒ I
| cons h q ⇒ conj (domain_ind' h) (domain_ind'' q)
end) ld)
| Forall e1 e2 d ⇒ P_Forall e1 e2 d (domain_ind' d)
| Forone e d ⇒ P_Forone e d (domain_ind' d)
| Locally n d ⇒ P_Locally n d (domain_ind' d)
| Locally2 m n d ⇒ P_Locally2 m n d (domain_ind' d)
| ForallWide n e1 e2 d ⇒ P_ForallWide n e1 e2 d (domain_ind' d)
end.
End DomainInduction.
Lemma foldr_prop_nth :
∀ {T} {P: T → Prop} d l n,
foldr (fun d acc ⇒ P d ∧ acc) True l →
P d →
P (nth d l n).
Fixpoint interp_domain (l : seq R) (d : domain) : Prop :=
match d with
| Never ⇒ False
| Always ⇒ True
| Partial p e ⇒ p (interp l e)
| Derivable n k f le ⇒ ex_derive_Rn k f n (nth 0 (map (interp l) le))
| Derivable2 m n k f le ⇒
let le' := map (interp l) le in
locally_2d (fun u v ⇒ ex_derive_Rn k f m (fun i ⇒ if ssrnat.eqn i m then u else if ssrnat.eqn i n then v else nth 0 le' i)) (nth 0 le' m) (nth 0 le' n) ∧
continuity_2d_pt (fun u v ⇒ Derive_Rn k f m (fun i ⇒ if ssrnat.eqn i m then u else if ssrnat.eqn i n then v else nth 0 le' i)) (nth 0 le' m) (nth 0 le' n)
| Continuous n f ⇒ continuity_pt (fun x ⇒ interp (set_nth R0 l n x) f) (nth R0 l n)
| Continuous2 m n f ⇒ continuity_2d_pt (fun x y ⇒ interp (set_nth R0 (set_nth R0 l n y) m x) f) (nth R0 l m) (nth R0 l n)
| Integrable f e1 e2 ⇒ ex_RInt (fun x ⇒ interp (x :: l) f) (interp l e1) (interp l e2)
| ParamIntegrable n f e1 e2 ⇒
locally (nth R0 l n) (fun y ⇒ ex_RInt (fun t ⇒ interp (t :: set_nth R0 l n y) f) (interp l e1) (interp l e2))
| LocallyParamIntegrable n f e ⇒
let a := interp l e in
∃ eps : posreal, locally (nth R0 l n) (fun y ⇒ ex_RInt (fun t ⇒ interp (t :: set_nth R0 l n y) f) (a - eps) (a + eps))
| And ld ⇒ foldr (fun d acc ⇒ interp_domain l d ∧ acc) True ld
| Forall e1 e2 s ⇒
let a1 := interp l e1 in let a2 := interp l e2 in
∀ t, Rmin a1 a2 ≤ t ≤ Rmax a1 a2 →
interp_domain (t :: l) s
| Forone e s ⇒ interp_domain (interp l e :: l) s
| Locally n s ⇒
locally (nth R0 l n) (fun x ⇒ interp_domain (set_nth R0 l n x) s)
| Locally2 m n s ⇒
locally_2d (fun x y ⇒ interp_domain (set_nth R0 (set_nth R0 l n y) m x) s) (nth R0 l m) (nth R0 l n)
| ForallWide n e1 e2 s ⇒
let a1 := interp l e1 in let a2 := interp l e2 in
∃ d : posreal,
∀ t u, Rmin a1 a2 - d < t < Rmax a1 a2 + d → Rabs (u - nth R0 l n) < d →
interp_domain (t :: set_nth R0 l n u) s
end.
Fixpoint is_const (e : expr) n : bool :=
match e with
| Var v ⇒ negb (ssrnat.eqn v n)
| AppExt k f le ⇒ foldr (fun v acc ⇒ andb (is_const v n) acc) true le
| AppExtD k f p le ⇒ false
| App f e ⇒ andb (is_const f (S n)) (is_const e n)
| Subst f e ⇒ andb (orb (ssrnat.eqn n 0) (is_const f n)) (is_const e n)
| Cst _ ⇒ true
| Binary b e1 e2 ⇒ andb (is_const e1 n) (is_const e2 n)
| Unary u e ⇒ is_const e n
| Int f e1 e2 ⇒ andb (is_const f (S n)) (andb (is_const e1 n) (is_const e2 n))
end.
Lemma is_const_correct :
∀ e n, is_const e n = true →
∀ l x1 x2,
interp (set_nth 0 l n x1) e = interp (set_nth 0 l n x2) e.
Lemma nth_map' :
∀ {T1} x1 {T2} (f : T1 → T2) n s,
nth (f x1) (map f s) n = f (nth x1 s n).
Lemma interp_ext :
∀ l1 l2 e,
(∀ k, nth 0 l1 k = nth 0 l2 k) →
interp l1 e = interp l2 e.
Lemma interp_set_nth :
∀ n l e,
interp (set_nth 0 l n (nth 0 l n)) e = interp l e.
Lemma interp_domain_ext :
∀ l1 l2 b,
(∀ k, nth 0 l1 k = nth 0 l2 k) →
interp_domain l1 b → interp_domain l2 b.
Lemma interp_domain_set_nth :
∀ n l b,
interp_domain (set_nth 0 l n (nth 0 l n)) b ↔ interp_domain l b.
Definition index_not_const l n :=
filter (fun v ⇒ ~~ is_const (nth (Cst 0) l v) n) (seq.iota 0 (size l)).
Lemma uniq_index_not_const :
∀ n l,
uniq (T:=ssrnat_eqType) (index_not_const l n).
Canonical ssrnat_eqType.
Lemma index_not_const_correct :
∀ n l (k : nat),
not (in_mem k (mem (index_not_const l n))) →
is_const (nth (Cst 0) l k) n = true.
Lemma interp_AppExt_set_nth_not_const :
∀ k f le l n x,
interp (set_nth 0 l n x) (AppExt k f le) =
apply k f (foldr (fun v acc i ⇒ if ssrnat.eqn i v then interp (set_nth 0 l n x) (nth (Cst 0) le v) else acc i)
(nth 0 (map (interp l) le)) (index_not_const le n)).
Fixpoint D (e : expr) n {struct e} : expr × domain :=
match e with
| Var v ⇒ (if ssrnat.eqn v n then Cst 1 else Cst 0, Always)
| Cst _ ⇒ (Cst 0, Always)
| AppExt k f le ⇒
let lnc := index_not_const le n in
let ld := map (fun e ⇒ D e n) le in
match lnc with
| nil ⇒ (Cst 0, Always)
| v :: nil ⇒
let '(d1,d2) := nth (Cst 0,Never) ld v in
(Binary Emult d1 (AppExtD k f v le),
And (Derivable v k f le :: d2 :: nil))
| v1 :: v2 :: nil ⇒
let '(d1,d2) := nth (Cst 0,Never) ld v1 in
let '(d3,d4) := nth (Cst 0,Never) ld v2 in
(Binary Eplus (Binary Emult d1 (AppExtD k f v1 le)) (Binary Emult d3 (AppExtD k f v2 le)),
And (Derivable2 v1 v2 k f le :: d2 :: Derivable v2 k f le :: d4 :: nil))
| _ ⇒ (Cst 0, Never)
end
| AppExtD k f v le ⇒ (Cst 0, Never)
| App f e ⇒ (Cst 0, Never)
| Subst f e ⇒ (Cst 0, Never)
| Binary b e1 e2 ⇒
let '(a1,b1) := D e1 n in
let '(a2,b2) := D e2 n in
match b, is_const e1 n, is_const e2 n with
| Eplus, true, _ ⇒ (a2, b2)
| Eplus, _, true ⇒ (a1, b1)
| Eplus, _, _ ⇒ (Binary Eplus a1 a2, And (b1::b2::nil))
| Emult, true, _ ⇒ (Binary Emult e1 a2, b2)
| Emult, _, true ⇒ (Binary Emult a1 e2, b1)
| Emult, _, _ ⇒ (Binary Eplus (Binary Emult a1 e2) (Binary Emult e1 a2), And (b1::b2::nil))
end
| Unary u e ⇒
let '(a,b) := D e n in
match u with
| Eopp ⇒ (Unary Eopp a, b)
| Einv ⇒ (Binary Emult (Unary Eopp a) (Unary Einv (Binary Emult e e)), And (b:: (Partial (fun x ⇒ x ≠ 0) e) :: nil))
| Efct f f' H ⇒ (Binary Emult a (AppExt 1 f' [:: e]), b)
| Efct' f f' df H ⇒ (Binary Emult a (AppExt 1 f' [:: e]), And (b :: (Partial df e) :: nil))
end
| Int f e1 e2 ⇒
let '(a1,b1) := D e1 n in
let '(a2,b2) := D e2 n in
let '(a3,b3) := D f (S n) in
match is_const f (S n), is_const e1 n, is_const e2 n with
| true, true, _ ⇒
(Binary Emult a2 (App f e2),
And (b2::(Integrable f e1 e2)::(Forone e2 (Locally 0 (Continuous 0 f)))::nil))
| true, false, true ⇒
(Unary Eopp (Binary Emult a1 (App f e1)),
And (b1::(Integrable f e1 e2)::(Forone e1 (Locally 0 (Continuous 0 f)))::nil))
| true, false, false ⇒
(Binary Eplus (Binary Emult a2 (App f e2)) (Unary Eopp (Binary Emult a1 (App f e1))),
And (b1::b2::(Integrable f e1 e2)::(Forone e1 (Locally 0 (Continuous 0 f)))::(Forone e2 (Locally 0 (Continuous 0 f)))::nil))
| false, true, true ⇒
(Int a3 e1 e2,
And ((ForallWide n e1 e2 b3)::(Locally n (Integrable f e1 e2))::
(Forall e1 e2 (Continuous2 (S n) 0 a3))::nil))
| false, false, true ⇒
(Binary Eplus
(Unary Eopp (Binary Emult a1 (App f e1)))
(Int a3 e1 e2),
And ((Forone e1 (Locally2 (S n) 0 (Continuous2 (S n) 0 a3)))::
(Forall e1 e2 (Continuous2 (S n) 0 a3))::
b1::(Forone e1 (Locally 0 (Continuous 0 f)))::
ParamIntegrable n f e1 e2::LocallyParamIntegrable n f e1::
ForallWide n e1 e2 b3::nil))
| false, true, false ⇒
(Binary Eplus
(Binary Emult a2 (App f e2))
(Int a3 e1 e2),
And ((Forone e2 (Locally2 (S n) 0 (Continuous2 (S n) 0 a3)))::
(Forall e1 e2 (Continuous2 (S n) 0 a3))::
b2::(Forone e2 (Locally 0 (Continuous 0 f)))::
ParamIntegrable n f e1 e2::LocallyParamIntegrable n f e2::
ForallWide n e1 e2 b3::nil))
| false, false, false ⇒
(Binary Eplus
(Binary Eplus
(Binary Emult a2 (App f e2))
(Unary Eopp (Binary Emult a1 (App f e1))))
(Int a3 e1 e2),
And ((Forone e1 (Locally2 (S n) 0 (Continuous2 (S n) 0 a3)))::
(Forone e2 (Locally2 (S n) 0 (Continuous2 (S n) 0 a3)))::
(Forall e1 e2 (Continuous2 (S n) 0 a3))::
b1::(Forone e1 (Locally 0 (Continuous 0 f)))::
b2::(Forone e2 (Locally 0 (Continuous 0 f)))::
ParamIntegrable n f e1 e2::LocallyParamIntegrable n f e1::LocallyParamIntegrable n f e2::
ForallWide n e1 e2 b3::nil))
end
end.
Lemma D_correct :
∀ (e : expr) l n,
let '(a,b) := D e n in
interp_domain l b →
is_derive (fun x ⇒ interp (set_nth R0 l n x) e) (nth R0 l n) (interp l a).
Fixpoint simplify_domain (d : domain) : domain :=
match d with
| And ld ⇒
let l := foldr (fun d acc ⇒
let d' := simplify_domain d in
match d' with
| Always ⇒ acc
| And l ⇒ cat l acc
| Never ⇒ Never :: nil
| _ ⇒ d' :: acc
end) nil ld in
match l with
| nil ⇒ Always
| d :: nil ⇒ d
| _ ⇒ And l
end
| Forall e1 e2 d ⇒
let d' := simplify_domain d in
match d' with
| Always ⇒ Always
| Never ⇒ Never
| _ ⇒ Forall e1 e2 d'
end
| Forone e d ⇒
let d' := simplify_domain d in
match d' with
| Always ⇒ Always
| Never ⇒ Never
| _ ⇒ Forone e d'
end
| Locally n d ⇒
let d' := simplify_domain d in
match d' with
| Always ⇒ Always
| Never ⇒ Never
| _ ⇒ Locally n d'
end
| Locally2 m n d ⇒
let d' := simplify_domain d in
match d' with
| Always ⇒ Always
| Never ⇒ Never
| _ ⇒ Locally2 m n d'
end
| ForallWide n e1 e2 d ⇒
let d' := simplify_domain d in
match d' with
| Always ⇒ Always
| Never ⇒ Never
| _ ⇒ ForallWide n e1 e2 d'
end
| _ ⇒ d
end.
Lemma simplify_domain_correct :
∀ d l,
interp_domain l (simplify_domain d) → interp_domain l d.
Class UnaryDiff f := {UnaryDiff_f' : R → R ;
UnaryDiff_H : ∀ x, is_derive f x (UnaryDiff_f' x)}.
Class UnaryDiff' f := {UnaryDiff'_f' : R → R ; UnaryDiff'_df : R → Prop ;
UnaryDiff'_H : ∀ x, UnaryDiff'_df x → is_derive f x (UnaryDiff'_f' x)}.
Global Instance UnaryDiff_exp : UnaryDiff exp.
Global Instance UnaryDiff_pow : ∀ n : nat, UnaryDiff (fun x ⇒ pow x n).
Global Instance UnaryDiff_Rabs : UnaryDiff' Rabs.
Global Instance UnaryDiff_Rsqr : UnaryDiff Rsqr.
Global Instance UnaryDiff_cosh : UnaryDiff cosh.
Global Instance UnaryDiff_sinh : UnaryDiff sinh.
Global Instance UnaryDiff_ps_atan : UnaryDiff' ps_atan.
Global Instance UnaryDiff_atan : UnaryDiff atan.
Global Instance UnaryDiff_ln : UnaryDiff' ln.
Global Instance UnaryDiff_cos : UnaryDiff cos.
Global Instance UnaryDiff_sin : UnaryDiff sin.
Global Instance UnaryDiff_sqrt : UnaryDiff' sqrt.
Definition var : nat → R.
Qed.
Ltac reify_helper a b z d :=
match a with
| Cst _ ⇒
match b with
| Cst _ ⇒ constr:(Cst d)
| _ ⇒ z
end
| _ ⇒ z
end.
Ltac reify fct nb :=
let rec reify_aux fct l i :=
match fct with
| ?f ?a ⇒ let e := reify a nb in reify_aux f (e :: l) (S i)
| _ ⇒ constr:((fct, rev l, i))
end in
match fct with
| var ?i ⇒
eval vm_compute in (Var (nb - i))
| Rplus ?a ?b ⇒
let a' := reify a nb in
let b' := reify b nb in
reify_helper a' b' (Binary Eplus a' b') fct
| Ropp ?a ⇒
let a' := reify a nb in
match a' with
| Cst _ ⇒ constr:(Cst fct)
| _ ⇒ constr:(Unary Eopp a')
end
| Rminus ?a ?b ⇒
let a' := reify a nb in
let b' := reify b nb in
reify_helper a' b' (Binary Eplus a' (Unary Eopp b')) fct
| Rmult ?a ?b ⇒
let a' := reify a nb in
let b' := reify b nb in
reify_helper a' b' (Binary Emult a' b') fct
| Rinv ?a ⇒
let a' := reify a nb in
match a' with
| Cst _ ⇒ constr:(Cst fct)
| _ ⇒ constr:(Unary Einv a')
end
| Rdiv ?a ?b ⇒
let a' := reify a nb in
let b' := reify b nb in
reify_helper a' b' (Binary Emult a' (Unary Einv b')) fct
| RInt ?f ?a ?b ⇒
let f := eval cbv beta in (f (var (S nb))) in
let f' := reify f (S nb) in
let a' := reify a nb in
let b' := reify b nb in
constr:(Int f' a' b')
| pow ?f ?n ⇒
reify ((fun x ⇒ pow x n) f) nb
| context [var ?i] ⇒
match fct with
| ?f ?a ⇒
let e := reify a nb in
let ud := constr:(_ : UnaryDiff f) in
constr:(Unary (Efct f (@UnaryDiff_f' f ud) (@UnaryDiff_H f ud)) e)
| ?f ?a ⇒
let e := reify a nb in
let ud := constr:(_ : UnaryDiff' f) in
constr:(Unary (Efct' f (@UnaryDiff'_f' f ud) (@UnaryDiff'_df f ud) (@UnaryDiff'_H f ud)) e)
| _ ⇒
match reify_aux fct (Nil expr) O with
| (?f,?le,?k) ⇒ constr:(AppExt k f le)
end
end
| _ ⇒ constr:(Cst fct)
end.
Lemma auto_derive_helper :
∀ (e : expr) l n,
let '(a,b) := D e n in
interp_domain l (simplify_domain b) →
is_derive (fun x ⇒ interp (set_nth R0 l n x) e) (nth R0 l n) (interp l a).
Ltac auto_derive_fun f :=
let f := eval cbv beta in (f (var O)) in
let e := reify f O in
let H := fresh "H" in
assert (H := fun x ⇒ auto_derive_helper e (x :: nil) 0) ;
simpl in H ;
unfold Derive_Rn, ex_derive_Rn in H ;
simpl in H ;
revert H.
Ltac auto_derive :=
match goal with
| |- is_derive ?f ?v ?l ⇒
auto_derive_fun f ;
let H := fresh "H" in
intro H ;
refine (@eq_ind R _ (is_derive f v) (H v _) l _) ;
clear H
| |- ex_derive ?f ?v ⇒
eexists ;
auto_derive_fun f ;
let H := fresh "H" in
intro H ;
apply (H v) ;
clear H
| |- derivable_pt_lim ?f ?v ?l ⇒
apply is_derive_Reals ;
auto_derive
| |- derivable_pt ?f ?v ⇒
apply ex_derive_Reals_0 ;
auto_derive
end.